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PREFACE

This Memorandum, prepared for the Advanced Research Projects
Agency, is part of a study of those phenomena which affect the per-
formance of optical or infrared reconnaissance and guidance equipment.
The objective of these studies is to provide sufficient understanding
for the system analyst to computc performance estimates under various
operational conditions.

A quantitative understanding of the effect of atmospheric turbu-
lence on a beam of light of finite cross sez-ion 1is required for the
prediction of the performance of various devices employing lasers for
target acquisition or guidance in tactical missions. Such applications
are characterized by near-horizontal propagation paths near the ground
of the order of one to tens of kilometers in length. This Memoraadum
obtains the modified intensity distribution in the far field of a fi-
nite transmitting aperture due to a turbulent medium. These results
should be of use to those interested in tactical applications of laser
range finders, laser line scanners, and the various guidance systems

employing an illuminating beam.



SUMMARY

The far-field intensity distribution at optical frequencies of an
initially plane wave from a finite, circular, source aperture is ob-
tained as a function of range and angle for various values of the index
structure constant. Describing the turbulence-induced index of refraction
fluctuations by the Kolmogorov spectrum, it is found that the time
average of the peak radiant intensity in the Fraunhofer region of a
finite source aperture decreases wich range at a much faster rate than
the intensity calculated from absorption and scattering by molecules and
particulate matter. An expression is derived for this intensity as the
sum of two terms: one which represents the exponential decay of the
energy in the initially coherent beam; and the other which represents
the complementary growth of the energy in an incoherent radiation field,
attributed to the loss of coherence by scatterings off the turbulence-
induced fluctuations in the medium. The exponent in this process is

shown to be of the order (R/R )11/6

(where R i3 the range where the
average part of the field is down by a factor of the order e ) in
contrast to the usual (R/Rv) for the attenuation by molecules and dust
(where Rv is the visual range). The beamwidth at half-power is shown
to increase very slowly until the propagation distance reaches a range
that 18 of the order of Rc. These results can be illustrated by the
application to 3 beam from an aperture of 2-cm diameter at a wavelength
of 0.6328u, For moderate daytime turbulence, Rc = 1.7 km at this
wavelength, compared to ar Rv of about 5 km for a correspondingly
moderate visual range. For small values of to (e.g. . zo.S 0.5 cm)
where zo is the inner scale of turbulence, the effects of turbulence
dominate over most of the range of interest. For this case, the beam
will exhibit some structure out to a range of about (1.0 - 1. 65) R
forOScle 2 0.1 cm.
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I, INTRODUCTION

In the presence of turbulence, inhomogeneities appear in the me-
diun which scatter electromagnetic waves. The electromagnetic field
diffracted by an aperture exhibits, in the absence of turbulence, a
ctaracteristic diffraction pattern with well-defined regions of maximum
and minimum intensfty. The purpose of this Memorandum is to calculate,
at optical frequencies, the effects of the turbulent medium on the dif-
fraction pattern. It is shown that the beam pattern flattens and
broadens as the propagation distance increases. Analytic expressions
are derived for the intensity distribution of a plane wave incident
on a circular aperture as a function of propagation distance and for
the parameters that characterize the turbulent medium.

The results obtained here have application in predicting the per-
formance of systems employing a laser for the detection and location of
targets. The assumption is made that the parameters that characterize
the turbulent medium are not a function of range. This is a good as-
sumption for horizontal paths. However, these results may also be
extended directly to apply to communications from satellites, etc.

The present analysis is restricted to a weakly inhomogeneous me-
dium. That is, it is assumed that the fluctuations are small compared
tc the average properties of the medium. Furthermore, it is assumed
that the characteristics of the mcdium do not change appreciably in a
period of oscillation of the electromagnetic field, because frequency
spreading (doppler effects) then becomes important. At near-infrared
and optical wavelengths, this condition is satisfied in the atmosphere.
The electromagnetic field under consideration has a time dependence
given by the factor e-iwt. In this case the time-dependent wave equa-
tion is replaced with the Helmholtz equation for an inhomogeneous me-
diumn. The electrical conductivity and magnetic permeability of the
medium are taken to be zero and one respectively. Here, only the case
of the propagation of a scalar field in a fluctuating medium is dis-
cussed. Extension to vector fields is straightforward. It is noted

that the results obtained here apply not only to electromagnetic fields,



but to any field that satisfies the wave equation, e.g., acoustic
waves when the scale of turbulence is greater than the wavelength.
Furthermore, it is assumed that the diemeter D of the aperture is
larger than the inner scale of turbulence to' Under th’s condition,
effects such as beam steering may be neglected.

In Section II the physical nature of the electr.magnetic field in
a turbulent medium is reviewed. A previously Gemonstrated treatment
of the field as a sum of an average and a random part is described.
In Section III the time average of the electromagnetic field 1is
discussed and applied to the field diffracted by an aperture. In
Section IV the random field is discussed, and in Section V the in-
tensity distribution as a function of range and field angle is
obtained. It should be noted that these results are derived on the
assumption of the single scaticring approximation and therefore may
not be accurate for R > Rc (Rc is the range where the average part
of the field is down by a factor of the order e-l). Curves depicting
the beam pattern (based on the Kolmogorov spectrum for the index of
refraction fluctuations) as a function of various parameters are given.
It is shown that the beam paétern flattens and broadens as the propa-
gation distance R increases. In particular, when R > RM (defined
below) the beam pattern is essentially flat.

The analytic results obtained are valid for propagation distances
R > Rl = DZ/X, where D and \ are the diameter of the aperture and wave-
length of the field respectively; i.e., the results are valid in the
Fraunhofer region. It is assumed here that R1 < Rc. In this case,

the modification of the neer-field diffraction pattern (Fresnel
region) is entirely negligible.



II1. GENERAL CONSIDERATIONS

In this seztion the qualitative nature of an electromagnetic wave
propagating in a weakly inhomogeneous medium is reviewed briefly.(l)
U, a typical component of the field, can be represented as the sum of
two terms: Uavg(i)’ Eﬁe average field defined by Uavg = U; and a ran-
dom field U:an where Uran = 0, As the field progresses through the
medium, energy is transferred from the average part to the random part
of the field so that energy is conserved. For prcyagation distances R
much less than a critical distance Rc (defined below) the field is
primarily unscattered; the scattered component is of the order n, where

1
n is the fluctuating part of the index of refraction (i.e., n =1+ n

’
lnll << 1, Hl = 0). For propagation distances much greater than Rc =

the field is essentially random since the average field is exponentially
small (for R >> Rc the field has undergone multiple scatterings off the

random inhomogeneities of the medium and is completely random).

For R << Rc, the total field

v = v, B ru @ ¢}

where, to terms up to second order in N, Uavg(ﬁ) is formally the same
as the field in the absence of turbulence (i.e., for n, £ 0), except

that the propagation wave vector k is not given by its value in the

absence of turbulence (ko) but is given by(l)
B (0)
k=k Jl+——F—+75-¢ (k) (2)

where Bn(O) is the correlation function of the index of refraction fluc-

"k
tuation evaluated at r = 0, i.e.,

®
A bar over a quantity signifies the ensemble average of the quan-
tity.

Rk
It is assumed here that the medium is statistically homogeneous
and 1isotropic.



Bn(?) - nl(?l)nl(?z)
- Bn(?1 - ?2)

-»> -
= Bn(r) where r = Irl - r2|

and

ik r
o
e
r

> >
R ik °r
o
Bn(r)e (3)

® (k) = fd?

It can be seen that On(ko) (and hence k) has a positive imaginary
(1)
part.
The random part of the field, to lowest order in Ny is given by

the first Born approximation:
-»> > >
U R = U Ry (R (4)

where U (ﬁ) is the field in the absence of turbulence, and wl(ﬁ) is

o
given by(z)
N2 1k_|R-R|
> [o} -»> > e -+
¥, (R) = ——— [n, (R/)U_(R?) =———— dR’ (5)
L 2nU°(§) ].1 © Ii - ﬁ’l

where the integration volume is that region of space where nl(R) £ 0

(the aperture being located at R = 0).



III. THE AVERAGE FIELD

Consider an expanding spherical wave. In the absence of turbulence
this field is given by

ikoR
e
U R) = € & ©®)

where C is an arbitrary constant. For R << Rc the average part of the

spherical wave is given by

eikR
Uavg(R) - "R
e“‘oR 1(k-k )R
= C R e (7
Let
¢ = 1(k - ko)R (8)
Then
ikok
- Ce Re¢ + iIm¢
Uavg(R) R [e ] 9
To lowest order in n,
O
Re¢ = - T Im’n(ko) (10)

and



B_(0) kz
Imp = T+ - Imon(ko) koR (11)

Thus, in the presence of the random inhomogeneities, the average compo-
nent of the field possesses a positive attenuation coefficient. The
quantitative results given by Eqs. (2) and (5) are obtained by a pertur-
bation method valid for R < Rc' The critical distance Rc is obtained
from the requirement that the relative magnitude of the correction to

the field in the absence of turbulence be small. It can be seen that

this requirement leads to the condition that(l)
|Re¢| << 1 (12)
The critical distance Rc is determined by
|R8¢(Rc)| =1 (13)

Thus, Rc is the propagation distance where the average component of the
field is down by a factor of the order e-l.
It follows immediately from the optical theorem(l) (or from energy

conservation) that

- 2Re¢(R) = |w1(R)I2

- [Rewl(R)]z + [Imwl(R)]z (14)

where wl is given by Eq. (5). Hence Rc may also be determined from

2
1/2 lwl(nc)l =1 (15)



Furthermore, if (A R) 1/2 >> 4§ o® where 2 is the inner scale of turbu-
lence. it can be shown that(z)

(Rev)? ~ (1my))? (16)

In this case Rc may be determined from

2 1/2
[Rey, (RD) =1, O R > an

Choosing the Kolmogorov spectrum to represent the index of refrac-

tion fluctuations, it can be shown that for a spherical wave and

1/2
(AOR) >> 20

(Rewl) =0.13 c k7/6 11/6 (18)**

where Ci is the index structure function.(z) Strictly speaking, Eq.

(18) is valid for propagation paths where Ci is independent of posi-
tion along the path, e.g., horizontal paths.

For slant paths through
the atmosphere, Eq.

(18) (for spherical waves) is replaced by
(Rey,)? = 0.238 k7/6jR c2(h) *%az (18a)
e¥) * o o M 2 a

Rkk
where h = z cos a, and a 18 the zenith angle.
stant, Eq. (18a) is identical to Eq. (18).

sumed that Ci is a constant.

When Ci is a con-

In this paper it is as-

Extension to the more general case 1is
straightforward.

Typically. 0.1 cm < 2 < 1 cm for horizontal paths near sea level.
*k
See Ref. 2, Eq. 9. 43

*k
See Ref. 2, Chap. 8.



The values of C: typical of turbulence in the first few hundred

meters of the atmosphere are: 30 x 10-13 cm.zl3 (strong daytime tur-
bulence within a few meters of the ground), 3 10.15 cm-zl3 and
7 x 10.15 cm.zl3 (moderate daytime turbulence #nd/or strong nighttime

turbulence), and 0.3 x 10°13 cm™2/3

(very weak turbulence which occurs
in the near neutral periods at dawn or dusk). Figure 1 gives Rc as a
function of wavelength for various values of Ci. For example, for

Ko = 00,6328, (He-Ne laser wavelength) it is found that

R,=5.9kn, €2 =0.3x10 ca2/3
=31km, C2=1x1070 723
= 1,7 km, crz‘ -3 x 10713 p72/3 (19)
= 1.1 km, c: « 7 x 10715 op2/3
= 0,48 knm, c: - 30 x 10°13 p2/3 /

For plane waves, Rc is equal to 0.61 times the values for a spherical
wave given by Eq. (19).

Next, consider the average field diffracted by an aperture. In
the Fraunhofer region, the field in the absence of turbulence is given
by(3) (it 1s assumed here that AO/D << 1 where D is a characteristic

length of the aperture)

s oY% eikoR -[ 1(Eo-§;)-3
Uo( ) = i\ 1 /)¢ dAn (20)

where u is the magnitude of the field (assumed constant) in the aper-

ture, 3 is the vector from the origin to an arbitrary point in the



R (km)

2k 3x IO'"”cm'z/3

] //-’—- 7X ] O""’cm'z/s
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Fig. 1—The critical distance Rc as a function of wavelength

]
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aperture, Eé is thf wave vector of the diffracted wave (differing in di-
rection only from ko which is assumed nearly normal to the aperture),
and dAn is the projection of an area element of the aperture normal to
the direction of the initial (undiffracted) light wave.

In the presence of the random medium the average field is given
by Eq. (20), with ko replaced by k where k is given by Eq. (2). For

a circular aperture of radius a, from Eq. (20)

u e (eikR) (Jl (ax)
uavg(n,e) o = x (21)

where

x = k6 (22)

sin 6 = ¢

and k is given by Eq. (2).

To lowest order in n1

u e eikR Jl(ax)
Uavg(R’e) ) ( R X

ik R -
Yot e © Y Iy(ax,) 1 2 %
..{ : ( - )( - exp -flwl(i)l +0(;:) +... (23)

where X, = koo and wl(i) is given by Eq. (5). The terms in the braces

in Eq. (23) represent the diffracted field in the absence of turbulence,
and the effects of the random medium are represented by the exponential
term. The analytic expression for wl given by Eq. (5) is valid for

R < Rc' On physical grounds it is expected that the qualitative nature
of the average field remains the same for R 2 Rc; i.e., it is damped.

In particular, for large propagation distances, Uav = 0, all of the
field energy having been transfered to the random f%eld.
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IV. THE RANDOM FIELD

The random field for R << Rc is given by Eq. (5). In this expres-
sion the quantity Uo(ﬁ) is the field that is present in the absence of
turbulence. In the case of Fraunhofer diffraction by an aperture (lo-
cated at the origin of coordinates), the random field wl is thus given
by Eq. (5) with Uo given by Eq. (20). In the integral of*Eq. (5) it
is seen that an integration of UO(R') over all values of R’ is required.
Equation (20) gives the diffracted field in the Fraunhofer region
(R > DZ/A). For R << DZ/A, the Fresnel expression for the diffracted
field should be used. In this report interest is in large propagation
distances (R >> DZ/A); hence negligible error is introduced in the vol-
ume integration of Eq. (5) by using Eq. (20) for all values of R.

The integral obtained by substituting Eq. (20) into Eq. (5) pre-

sents great mathematical difficulty. However, if we consider the case

koe/KR <« 1 (24)

(where K is the wave number of the power spectrum of the index of re-
fraction fluctuation) it can be shown that the resulting integral ex-
pression obtained reduces to that given by Tatarski for a spherical
wave.* Furthermore, long propagation distances where ()\OR)]'/2 >> zo
are of interest. In this case the spectrum of the correlation function

for the incoherent field fluctuation is concentrated near

_ 1/2
K 21/00;1) (25)

(i.e., the refractive index inhomogeneities with scales of the order
1/2
(R

*k
the wave). From Eqs. (24) and (25) we find that in the case of

make the largest contribution to the field fluctuations of

*
See Ref. 2, Chap. 9.
*ok

See Ref. 2, Chap. 7.
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2

R>>R1-

>«|c

(26)

o

Tatarski's results for a spherical wave may be used for the integral
expression of tl(i)z. For a wide range of parameters, R1 << Rc. For
ko = 0.,6328) and a = 1 cm, R1 2 600 m, while Rc > 1 km (see Eq. (19)).

Results derived here apply to the case R >R, = Dz/xo. For R < R,
a more thorough analysis of the integral expression for '1 (i.e., Eq.

(5)) with Uo gisen by Eq. (20) is needed. No qualitative calculations
for R < Rl are attempted here.
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V. BEAM PATTERN

In this section the results of Sections III and IV are used to
obtain the diffraction patteiru of a circular aperture in the presence
of the inhomogeneous medium. First, an approximate expression for the
diffracted power valid for R ~ch 18 derived. To do this it is as-
sumed that the average radiated power can be written as a sum of two

2
avgl )3
2 g
and a random part (proportional to Iuranl )+ This, in effect, assumes

terms for all values of R: an average part (proportional to |U

that the phase of the random part of the field is not correlated to
the phase of Uavg' This is true both for R >> R, and for R <« R.3
i.e., Uavguran = 0 for both of these limiting cases, and it is also
assumed to be true for R ~ch. In order to obtain the angular
dependence of the beam pattern it is noted that the angle of scattering
of the field by the refractive index inhomogenieties is of the order
A/zo, where zo is the inner scale of turbulence (see Ref. 2). The
assumption that the scattering angle is of the order x/zo is consistent
with the observation that stellar images even under poor seeing con-
ditions exhibit a finite blur circle.(a) In the absence of turbulence
almost all of the diffracted power is contained in a cone of the order
A/D. Since £, <D (typically, 0.1 cm < ¢ < 1 cm), it is seen that most
of the scattered power will be contained in a cone with angular aperture
of the order x/zo. Hence, to obtain the beam pattern we assume that
the scattered radiation is contained in this cone. This neglects the
relatively small amount of radiation contained in the sidelobes. In
view of other approximations involved in the calculation and uncertainties
in the underlying statistical description of the index of refraction
fluctuations, it is felt that this approximation is justifiable.
Therefore, let (d5i = 2m sin 6 d@)

dp = dPavg + dPran 27)
where
2
P.e
= - 0 -f(R) ,.
dPavg 4t Al(xa) ¢ d (28)
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P, is the power in the aperture, and Al(x) (= 2J1(x)/x] is the Lommel

0
function of the first kind(s) whose square gives the beam pattern in

the absence of turbulence, and
d. =L@ - fW®y (29)

The constant C in Eq. (29) is determined by requiring t?atz.f dP = Po
(the power in the aperture), which yields that C = ZPb =) . The
quantity BR is determined by the requirement that for small R, the
power given by Eq. (27) gives the perturbation result. Doing this we

obtain

£(R) = 2[Rew1(R)]2

(30)
- 0.26C'21k7/6Ru/6 (for the Kolmogorov spectrum)
Hence, from Eqs. (27)-(30)
—— 2
- l’o‘2 2 - 1|2 1 - e 4| )
dp = o Al(ee) e + > &
Y
where > (31)

2
Z.ﬂag
Y E(t >1
[+

For R >> Rc’ dp = Podﬂi the average field being exponentially
small, the quantity in the braces in Eq. (31) represents the modified
beam pattern due to the effects of turbulence. Denoting this quantity
by Ai(ee) F(R,8), we have

Te ()12 Te ()12
A2(eo 2 'ltl(R)l2 211'_ . hl(R)L)
1(¢®) F(R,8) = Al (e0) |e + .

22
)
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where, to lowest order in ni, c= koa = 2na/\ << 1. The quantity in
the brackets in Eq. (32) thus represents the effects of the turbulent
medium on the beam pattern.

A quantity of interest is the dependence of the radiant intensity
on range for § = O, Figures 2 and 3 are a plot of Ai(O) F(R,0) as a
function of propagation distance R for the Kolmogorov spectrum for var-
ious values of the index structure constant, z and A = 0,6328y and
1. 06u. In addition to turbulent scattering, Chere is an exponential
loss of intensity due to both absorption and scattering by molecular
and particulate constituents of the atmosphere. This attenuation is
given by exp[-R/Rv] where R is the visual range.

Commonly occurring values of Rv are 1-5 km. 1Included in Figs.
2 and 3 is a plot of this attenuation for Rv = | and 5 km. It is seen
that even with moderate turbulence and D = 2 cm, the attenuation of
the beam will be dominated by turbulent scattering when Eo <0.5 cm.
For larger values of D within the range of interest it is expected
that turbulent scattering will be dominant for LO,S 1 cm. 1In Figs.
4 and 5 the pattern (i.e., Eq. (32)) is plotted as a function of
t(= €6) for various values of propagation distance R, t » and

2 = 3 x 10 15 2/3 for a 2-cm diameter aperture. The quantity

A (t) gives the beam pattern in the absence of turbulence. The beam
pattern for other values of C (for fixed ¢ o’ A and D) may be

obtained from Figs. 4 and 5 by replacing R by R[C /C2]6/11 where
C:o =3 x 10 15 2/3. The sharp discontinuities shown in Figs. 4c

and 5c¢ result from the assumption that the scattered power is contained

in a cone of half-angle equal to x/zo and are not physically significant.
Another quantity of interest is the half-power width. That is,

that value of 8 where the radiant intensity is one-half its value at

@ = 0. From Eqe (32) the angle 91/2 at half-maximum is given by the

solution to

*
Note that Aj(0) = 1; in the absence of turbulence the normalized
Fraunhofer beam pattern is independent of range.
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8=0(D =2cm, \=1.06u) and various values of
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2
23, (t, ,,) - - - -
2N m ,,12(1 Ce f<R>) <At _2_{1 Ce f<R>} (33)

Y172 v v
where
21a
172 = %1/ ®1/2 (34)

Rearranging terms in Eq. (33),

23,¢e) V) 2 . £(R)

— ) =3 1-—2'(6 -1) (35)

1/2 Y

Equation (35) has becn solved numerically for t1/2 as a function of
range and is plotted in Figs. 6 and 7 for various values of Ci, zo,

and A. As R inc ‘eases, t1/2 increases slowly until the propagation
distance reaches a range that is of the order of Rc, where it increases
rapidly to a limiting value equal to ﬂD/Lo. The curves in Figs. 6 and
1/2 < ﬂD/zo, the quantity t = 1.62)
is the half-power width in the absence of turbulence.

7 are for range values such that t

The diffracted beam flattens and broadens as R increases. That
is, for large enough R, the beam pattern is contained in a cone angle
of the order A/lo. For values of t(= €8) near the central maximum of
the beam pattern (~ ), RM is defined as that range such that for
R > RM the radiant intensity never varies by more than one-half its
maximum value. For R > RM the effect of the transmitting aperture

is lost. We note that t1/2 >> 1 at this range; hence, from Eq. (35)

1 - %(ef(kn) . 1)ao
Y
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The numbers on the curves indicote the struclure
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Fig. 6—The normalized half-power width t,,,/t, as a function
of range for A=0,6328., D =2 cm, various values of
the index structure constant, and £,
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or

2
£(R,) = 1og(15- + 1) (36)

From Eqs. (30) and (36), we obtain

6/11

p-

] log %; +
Ll P C:k7/6
(37)
i

6/11
; 2
--1og(3’—+1) R

.2 2 c

Thus, as R increases, tl/2 increases from its value in the absence of
turbulence (to = 1.62), tending rapidly to its limiting value (ﬂD/to)
as R — RM. Figure 8 is a plot of RM, for a 2-cm di;meter aperture,
as a function of wavelength for various values of Cn. Figure 9 is
a plot of the coefficient of Rc in Eq. (37). This factor is independent
of wavelength and turbulence strength and is only a function of lo
and D.

These results have been derived assuming the single scattering
approximation. It is expected that this assumption is valid for
RS Rc' Therefore the asymptotic behavior (for R > Rc) shown in Figs.
2 and 3 may be an artifact of this approximation.

These results can be {llustrated by the application to a beam
from an aperture of 2-cm diameter at a wavelength of 0.6328y. For
moderate daytime turbulence, Rc = 1.7 km at this wavelength compared
to an Rv of about 5 i for a correspondingly moderate visual range.
However, for o S 0.5 cm, the difference in functional dependence results
in a crossover range with the effects of turbulence dominant over most
of the range of interest. For this case, the beam will exhibit some
structure out to a range of about (1.0 - 1.65) Rc for 0.5 cm 2 10‘2 0.1

CMme
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Fig. 8— The maximum range Ry, as a function of wavelength

for various values of the index structure constant,
D=2cm, and 2,
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